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The electron and hole states and confining potential for cylindrical core-shell structure with type-II band
alignment are obtained from a numerical solution of the self-consistent Schrödinger-Poisson system of equa-
tions. The photoluminescence �PL� kinetics is theoretically analyzed, with the nanostructure size dispersion
taken into account. The results are applied to the radiative recombination in the system of ZnTe/ZnSe stacked
quantum dots. A good agreement with both cw and time-resolved experimental observations is found. It is
shown that size distribution results in the PL decay that has essentially nonexponential behavior even at the tail
of the decay where the carrier lifetime is almost the same due to slowly changing overlap of the electron and
hole wave functions. Finally, a model situation applicable to colloidal core-shell nanowires is investigated and
discussed.
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I. INTRODUCTION

One-dimensional �1D� nanoscale structures such as quan-
tum wires �QWRs� have been attracting a great deal of inter-
est due to their potential for applications in various electronic
and optical devices, such as transistors, diodes, lasers, and
biological sensors �see, e.g., Refs. 1–3 and references
therein�. This interest is further stimulated by recent ad-
vances in fabrication technologies that led to development of
several growth techniques allowing synthesizing QWR com-
posed of two single-crystalline semiconductor materials with
core shell, core multishell, or superlatticelike structure.4,5

Heterojunctions formed in these structures result in the band
discontinuities whose effect on spectrum of electrons and
holes in the effective-mass approximation can be described
in terms of effective potential wells and barriers for carriers
residing in different materials. If the band alignment pro-
duces potential wells for both electrons and holes within the
same material, the structure is classified as type-I. Another
type of band alignment, called type-II, results in formation of
the potential well for electrons in one material and for holes
in the other. As a result, electrons and holes in type-II struc-
tures are spatially separated giving rise to an internal electric
field that bends the conduction and valence bands and modi-
fies energy levels and wave functions of electron-hole pairs.
This effect is manifested in both cw and time-resolved pho-
toluminescence �PL�: in the former it is responsible for the
blueshift of the PL with increasing excitation intensity,6–11

whereas in the latter it results in a relatively long �due to
weak overlap of the wave functions� nonexponential
decay,6,9,10 which also depends on the excitation
intensity.6,9–11 There have been a number of attempts to ob-
tain a quantitative description of this behavior in type-II
quantum wells using self-consistent Poisson-Schrödinger
analysis6 or microscopical multiband semiconductor lumi-
nescence equations.11

In this paper we focus on theoretical studies of similar
effects in type-II cylindrical heterostructures characterized

by two-dimensional confinement of the carriers. In our cal-
culations, based on self-consistent Schrödinger-Poisson
equations, we study dependence of electron and hole ener-
gies and wave functions on the number of photoexcited car-
riers taking into account a possibility of population of not
only the ground but also excited electron and hole states. The
results of these calculations are used to model dependence of
cw PL energies on the excitation intensity as well as behav-
ior of time-resolved PL. In the latter case, we take into ac-
count that the experimentally observed nonexponential tail in
the time dependence of the PL may be caused not only by
modifications of the electron-hole states dependent on exci-
tation intensity, but also by random variations in geometric
characteristics �e.g., size� of nanostructures. Such a depen-
dence on geometry arises because in a typical PL experiment
the signal is collected from a large number of nanostructures.
This effect is often considered by fitting experimental results
to multiexponential12 or stretch-exponential13 function with
fitting parameters having little if any physical meaning. Here
we take into account effects of the disorder by directly aver-
aging the calculated intensity of emission over a statistical
distribution of the parameters of the considered structures,
following the approach of Ref. 14. Taking into account both
effects contributing to the nonexponential PL decay enables
us to carry out more accurate comparison of our calculations
with experimental results.

While our calculations most directly apply to quantum
wires with a small modification they can also be used to
study different types of structures with cylindrical symmetry.
In particular, we use our approach to explain results of cw
and time-resolved PL measurements performed on vertically
stacked self-assembled quantum dots �QDs� with close to a
circular cross section. Although this system differs from
quantum wires, we show that under certain circumstances
one can easily adapt our theory by introducing an anisotropic
effective mass for holes. In Sec. II we discuss our model,
describe details of calculations, and provide more detailed
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arguments justifying applicability of our results to vertically
stacked quantum dot structures. Details of the experimentally
studied structure and comparison of the theory and experi-
mental results are described in Sec. III, which is followed by
a summary.

II. THEORETICAL MODEL AND CALCULATIONS

A. Self-consistent potential, energy levels, and wave functions

The theoretical analysis is based on an assumption that
high-energy electron-hole pairs created by an optical pulse
rapidly relax into the lowest available states by nonradiative
processes, where they reach a quasiequilibrium with the lat-
tice before they recombine radiatively. Therefore, popula-
tions of electrons and holes can be characterized by the
Fermi distributions with two independent chemical quasipo-
tentials. The goal of theoretical calculations in this situation
is to find the electron and hole Fermi levels as functions of
the number of excited electron-hole pairs. To this end we
solve the Schrödinger equations for electrons and holes with
the Coulomb interaction taken into account within a Hartree
approximation. Within this approximation the confinement
potential is combined with an electrostatic potential ��r� de-
termined self-consistently from the Poisson equation. In our
model the nanostructure is taken as an infinitely long cylin-
drical type-II core-shell quantum wire with shell radius rs
and core radius rc.

The applicability of this model to vertically stacked QDs,
studied experimentally �Sec. III�, requires additional justifi-
cations, which are different for electrons and holes. Electrons
in this structure reside outside the dots in the barrier material
�ZnSe� and away from the spatial regions above or below the
QDs.15 Therefore, they are virtually free to move in the ver-
tical direction, along the whole stack, and are characterized
by an effective mass typical for the bulk ZnSe. This behavior
of electrons is confirmed by the experimental observation of
the Aharonov-Bohm oscillations in magneto-optical
experiments.15,16 The situation with holes is more compli-
cated. First of all, in these materials the hole ground states
are degenerate, so that one has to distinguish between heavy
holes and light holes. It is well known that in quantum wires
ground state is populated mostly by light holes while in dis-
klike QDs the heavy hole’s population is more prevalent.17,18

The main difference between heavy and light holes �apart
from their masses� is that they obey different selection rules
for interaction with light. However, this difference manifests
itself mostly in polarization-sensitive and magneto-optical
experiments. In the phenomena discussed in this paper polar-
ization effects do not play a role, so that we can treat light
and heavy holes in a similar way taking into account only
difference in their masses and confinement potentials. An-
other important property of holes in stacked QDs is that,
unlike electrons, they are well confined within individual
QDs �ZnTe� with only exponential tails of their wave func-
tions “leaking” outside. Using a tight-binding-like arguments
one can describe holes in this situation as belonging to a
narrow band of propagating states with an effective mass,
which is significantly larger than the bulk effective mass. In
principle, the value of the “vertical” effective mass can be

found using overlap integrals between adjacent QDs, but our
calculations showed that its exact value is not important for
the system considered in this work. One can think of this
situation as of bands of particles with infinite effective mass,
so that the respective densities of states become proportional
to respective � functions with a prefactor determined by the
number of QDs in the system. Since the luminescence is
excited uniformly in the entire stack, we can assume that the
holes are also uniformly distributed between QDs. This as-
sumption is consistent with experimentally observed linear
dependence of the PL intensity on excitation intensity.15 In
our calculations, however, we use the standard one-
dimensional density of states for both holes and electrons
and verify that an error due to lack of accurate knowledge of
this parameter is smaller than errors caused by uncertainty of
the band offsets determining confinement potentials.

We further neglect in our calculations exciton corrections
to energies of electron-hole pairs, which is justified due to
very small exciton binding energy for these structures �be-
tween 2 and 8 meV�.10 Taking into account the mass-
mismatch effect, but neglecting valence-band mixing and
nonparabolicity of the conduction band, the one-particle
Hamiltonian in cylindrical coordinates with polar axis z in
the growth direction is given by

Ĥj = −
�2

2 �1

r

�

�r
� r

mj
�

�

�r
� +

1

mj
�r2

�2

��2 +
1

mz,j
�

�2

�z2�
+ Vj�r� + qj��r� , �1�

where r and � are, respectively, radial and azimuthal coordi-
nates, index j=e ,h here and throughout the paper refers to
electrons and holes, respectively, and qj is the charge of the
particle with qh=e and qe=−e with e equal to the electron’s
charge value. mj

� stands for electron and hole radial effective
masses, while mz,j

� introduces the vertical effective mass,
which for electrons coincide with the radial mass, but for
holes mz,h

� �mh
�. Spatial confining potentials of the conduc-

tion and valence bands, Vj, radial effective masses, and the
electrostatic potential � depend on the radial coordinate only.
The radial effective mass and confining potentials are finite
steplike functions with jumps at rc. In general, in what fol-
lows indices c and s are used to designate core and shell
parameters, respectively.

In many papers dealing with heavily doped structures
holes are excluded from consideration19–21 and are replaced
with a fixed spatial distribution of the dopants. Such an ap-
proach is only justified when the processes under consider-
ation are determined by only one type of carriers. In the case
of not intentionally doped structures, similar to the one con-
sidered in this paper, the heavy holes significantly contribute
to the nonuniform carrier distribution, affecting the potential
profile of the structure. Therefore, in this case one has to
self-consistently solve both the electron and hole
Schrödinger equations, which are coupled through the Pois-
son potential �.

We separate variables in the Schrödinger equations corre-
sponding to the Hamiltonian by presenting the wave function
in the form
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� j,mj,nj
�r,�,z� =

� j,mj,nj
�r�

�2�Lz

eimj�eikjz, �2�

where mj is the azimuthal quantum number, nj is a radial
quantum number, kj is a wave vector of free motion along
the z direction, and Lz is the normalizing length of the wire.
At the exterior interface between the shell and vacuum we
set � j,mj,nj

�rs�=0, which corresponds to the requirement that
the electrons and holes are confined to the volume of the
core-shell structure.

The Poisson equation determining the electrostatic poten-
tial � for given electron and hole charge densities in un-
doped materials is given by

1

r

�

�r
�	�r�r

�

�r
�� = −

e�nh�r� − ne�r��
	0

, �3�

where ne�r� and nh�r� are the electron and hole volume con-
centrations, which are assumed to depend only on the radial
distance r, and 	�r� and 	0 are permittivities of the hetero-
junction and free space, correspondingly. With 	�r� depend-
ing on radial coordinate the effect of the mismatch of dielec-
tric constants is also taken into account. The carrier
concentrations are determined by spatial distributions of the
wave functions of respective quantum states as follows:

nj�r� =
1

2�
�

mj,nj

	� j,mj,nj
�r�	2


Emj,nj

j




f�E�gj,mj,nj

c,s �E�dE ,

gj,mj,nj

c,s �E� =
1

��
� 2mz,j

�c,s

E − Emj,nj

j , �4�

where the summation is carried out over all partially filled
bands, gj,mj,nj

�E� is the 1D density of states at the njth sub-
band, f�E� is the Fermi-Dirac distribution function, Emj,nj

j are
the bottom �top� energies of the respective electron and hole
subbands. Our calculations showed that for experimentally
relevant pumping intensities we can only consider ground
state with mj =0, nj =0 and two closest in energy degenerate
excited states with mj = �1, nj =0. Limiting the contribution
to the charge densities only by the carriers in these states, we
rewrite Eq. �4� �omitting indexes nj =0� as

nj�r� =
	� j,0�r�	2

2�



E0
j




f�E�gj,0
c,s�E�dE

+ 2
	� j,1�r�	2

2�



E1
j




f�E�gj,1
c,s�E�dE , �5�

where E0
j and E1

j are the ground and the first excited state
energies of the electron or hole, � j,0 and � j,1 are the wave
function of the ground and first excited states, corresponding
to the lowest state at mj =0 and mj = �1; the factor 2 in the
second term is due to the double degeneracy of the first ex-
cited state having the same energy for mj =−1 and mj =1. At
zero temperature T=0 distribution f�E� transforms into the
step function and integral over E is bounded at the upper
limit by the value of the quasi-Fermi energy EF

j . For overall
electrically neutral QWR the number of electrons is equal to

the number of holes, N=Ne=Nh; thus, the linear density of
the carries nL=N /Lz is related to the charge distribution as

nL =
2�2

��
�� j,0

�EF
j − E0

j + 2� j,1
�EF

j − E1
j � ,

� j,l = �mz,j
�c


0

rc

	� j,l�r�	2rdr + �mz,j
�s


rc

rs

	� j,l�r�	2rdr , �6�

where � j,l is a geometric average of the square root of the
electron or hole effective mass arising from the mass-
mismatch effect. The second term in Eq. �6� should be omit-
ted while the respective Fermi levels EF

j remain below the
first excited state, E1

j . In our calculations we do not introduce
an additional surface charges that can arise at the interfaces
between core and shell as well as between shell and vacuum
due to impurities and defects. Therefore, we do not use
Fermi-level pinning boundary conditions assumed, for in-
stance, in Ref. 20. Positions of the electron and hole quasi-
Fermi levels are determined in our approach by charge neu-
trality condition Ne=Nh and Eq. �6�, which relates the Fermi
levels to the number of photoexcited electron-hole pairs.
When solving the Poisson equation we assume zero electric
field �constant potential� in vacuum outside of the structure
with the zero value of the potential chosen at the core-shell
interface. It should be noted that we carry out full electro-
static calculations taking into account contributions of both
electrons and holes self-consistently. This circumstance dis-
tinguishes our calculations from earlier works,22,23 where the
modification of the confining potential due to the carriers
was neglected within the core region, and the blueshift of the
luminescence was explained only by modification of energy
levels of the major carriers in the shell region due to forma-
tion of triangular quantum wells. Our calculations demon-
strate that these approximations, at least for the structure
considered here, are not justified, and that modification of the
potential in the core region and the shift of the hole energy
levels play important roles in the phenomena under study.

The self-consistent calculations are carried in the follow-
ing repeated steps. At the initial step the electrostatic poten-
tial is equal to zero everywhere, i.e., ��r�=0. One-particle
electron and hole wave functions calculated from Eq. �1� are
used to provide the carrier concentrations as functions of
radial coordinate to the Poisson equation �3�. As long as the
quasi-Fermi level is below the first excited state, the second
term in Eq. �6� is dropped and the Fermi level is given by the
following expression:

EF
j = E0

j +
�2nL

2�2

8� j,0
2 . �7�

If, however, its value, obtained in the one-level approxima-
tion, grows above the first excited state, the second term in
Eq. �6� is taken into consideration, and the value of the Fermi
energy is given by a different expression,
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EF
j = E0

j +
��nL�� j,0 − 2� j,1

���nL��2 − 8�E1
j − E0

j ��� j,0
2 − 4� j,1

2 ��2

8�� j,0
2 − � j,1
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When a new electrostatic potential is calculated, it is substi-
tuted into the Schrödinger equation �1� and the next iteration
of the self-consistent calculations continues until the conver-
gence criteria �variation of the potential profile from iteration
to iteration is smaller than a required value� is satisfied. Typi-
cally, convergence is established after 2–50 iterations, de-
pending on the parameters of the materials in the heterojunc-
tion, the number of the excited carriers, and the uniformity of
carrier distribution. If necessary, the convergence of the pro-
cedure can be improved, for instance, by taking the electro-
static potential ��r� at a given iteration step as an average of
the electrostatic potentials obtained from the previous two
iterations. However, a serious problem with convergence of
this scheme arises when one attempts to compute energy
levels lying just below the top of the potential well. In this
case, even if after a number of iterations the calculated en-
ergy levels remain inside the well reproducing type-II type of
behavior, there is a chance that at the next step it will become
slightly greater than the height of the well. In this situation
the particle is pushed out across the interface into the second
constituent material of the heterostructure resulting in large
overlap of the wave functions similar to type-I heterostruc-
tures. Without the large initial separation between the carri-
ers, the electrostatic potential reduces drastically, lowering
the energy of the particle and pulling it back in its residence
material. As a result, the system becomes “trapped” into a
bistable state with two energy levels alternating at every it-
eration. This bistability, however, is an artifact of the com-
putation method and does not correspond to any real physical
effect. In our calculations this problem did not arise for mod-
erate pumping levels. When the self-consistent solution is
found the final potential profile, wave functions, electron and
hole densities, and further information can be derived. The
pumping intensity in our calculations was limited by the re-
quirement that the value of the quasi-Fermi energy level �7�
does not exceed the second excited state. The energy of this
state is obtained from Eq. �1� by choosing the lower of two
possible levels: the lowest state for angular quantum number
mj =2 or the second lowest state for mj =0 in the potential
created by the converged solution of the system. The results
of our calculations for a ZnTe/ZnSe 1D structure using set of
typical parameters �Table I, where mh

� refer to effective mass

of the heavy holes in the radial direction� are shown in Figs.
1 and 2.

First of these figures shows modifications of the potential
profile due to photoexcited carriers for the radius of the core
�ZnTe� rc=50 Å and radius of the shell �ZnSe� rs=150 Å.
One can see that the potential profiles for both electrons and
holes experience comparable modifications, which manifest
in the shift of the ground-state energies for both types of
carriers by about 10 meV. Plots in Fig. 2 give more detailed
description of the dependence of energy characteristics of
electrons and holes on the number of excited pairs. First of
all we shall note that the deviation of the quasi-Fermi level
of holes from E0

h is very small even when the vertical effec-
tive mass of the holes is chosen equal to the in-plane mass.
The electron quasi-Fermi level, on the contrary, depends

FIG. 1. Band energy diagram of the ZnTe/ZnSe type-II core-
shell quantum wire with core radius 50 Å and shell radius 150 Å.
Dashed lines represent the diagram in the absence of the free car-
riers, for which the electron ground energy E0

e =19 meV and the
hole ground energy E0

h=13 meV. Solid lines are the potential pro-
files for linear density nL=7
107 m−1 with E0

e =31 meV and E0
h

=24 meV. Energy values are counted from the bottom of each
unaffected well. All profiles are in scale except of the gap between
conduction and valence bands.

TABLE I. Material parameters used in calculations. Here me
� is the mass of the electron in conduction

band, mh
� is the mass of the heavy hole in radial direction, and m0 is the free-electron mass. Masses and

dielectric constants are taken from Ref. 24 and energy values are taken from Refs. 24 and 25.

Material me
� mh

� 	
Egap

�eV�
�Ve

�eV�
�Vh

�eV�

ZnTe 0.122m0 0.60m0 10.3 2.39
0.35 0.78

ZnSe 0.160m0 0.75m0 8.60 2.82
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quite significantly on the number of electrons, and one can
see in Fig. 1 that at some level it exceeds the energy of the
excited level of the electrons. The main qualitative conclu-
sion of these calculations is that the nonuniform distribution
of the holes in these samples and its modification with the
concentration of the carriers significantly affects the potential
profile and energy levels of the electron-hole pairs and,
therefore, has to be taken into account.

In order to calculate the complete spectral profile of the
luminescence intensity one would need to integrate over all
states involved in transition taking into account their joint
density of states. In this work, however, we have a more
modest goal to analyze overall spectral shift of the PL with
pumping intensity. To this end, it is sufficient to consider the
pumping dependence of the maximum and minimum ener-
gies of the emitted photons defined as

��max = Ee,F − Eh,F + Egap,

��min = Ee,0 − Eh,0 + Egap, �9�

where Egap is defined in Fig. 1.

B. Time dependence of luminescence intensity

We analyze the time dependence of luminescence assum-
ing that only electron and hole subbands originating from
their respective ground states with mj =0 are populated and
that the radiative recombination occurs between electron and
holes occupying the respective ground-state subbands. Ne-
glecting changes in the number of electron-hole pairs due to
nonradiative recombination �case of low temperature�, kinet-
ics of the number of carriers is described by a simple equa-
tion,

dnL�rc,rs,t�
dt

= −
nL�rc,rs,t�
��rc,rs,nL�

, �10�

where �−1 is the rate of the radiative spontaneous recombi-
nation of the electron-hole pairs. In this equation we explic-
itly indicate the dependence of the carrier density and � on
the radii of the core-shell structure anticipating subsequent
averaging over their distributions. The recombination rate is
given by the Fermi golden rule and is proportional to the
overlap integral,

��rc,rs,nL�−1 = R	
�e,0	�h,0�	2. �11�

The constant R includes all microscopic constants such as the
dipole matrix element calculated between the Bloch func-
tions of the conduction and valence bands, which do not
depend on the pumping intensity or geometry of the struc-
ture. The overlap integral between the envelope wave func-
tions �e,0 and �h,0 is the only parameter which does depend
on the radii of the core-shell structure and on the number of
the existing electron-hole pairs.

In the case of the ensemble of nanostructures the observ-
able PL intensity is determined by the average over the en-
semble number of the electron-hole pairs, which can be ex-
pressed in terms of distribution functions fc and fs of the core
and shell radii14 as follows:

n̄L�t� = 

r̄c−�c

r̄c+�c 

w̄−�w

w̄+�w

nL�rc,rc + w,t�fc�rc�fw�w�drcdw ,

�12�

where w=rs−rc is the width of the shell, r̄c and w̄ are aver-
age values of the respective quantities, and �c and �w deter-
mine their maximum and minimum values used for numeri-
cal evaluation of the respective integrals. The normalized PL
intensity IPL at a given photon energy, is defined by the rate
of change in the average number of electron-hole pairs,14

IPL�t� = −
1

n̄L�0�
dn̄L�t�

dt
, �13�

where n̄L�0� is an average concentration of the carriers at
initial moment of time t=0. If one takes into account the
dependence of the decay time � on the concentration nL, the
solution of Eq. �10� is no longer given by an exponential
function and can only be found numerically. In order to char-
acterize this solution it is convenient to use a quantity

�0 = lim
nL→0

��nL, r̄c, r̄s� .

This parameter characterizes the decay rate at vanishingly
small concentration of the carriers �the flat-band condition�
in a structure with average geometric parameters. With the
use of this quantity one can present the dimensionless quan-
tity ��nL ,rs ,rc� defined as

��nL,rc,rs� =
�

�0
.

This quantity does not depend on microscopic characteristics
of the materials constituting the structure �represented by
factor R in Eq. �11�� and only retains dependence on the

FIG. 2. Dependence of the energies of the ZnTe/ZnSe type-II
core-shell quantum wire �rc=50 Å and rs=150 Å� on the density
of the carries. The gap energy is not added. The maximum value of
the density is limited by the condition for the quasi-Fermi level to
be below the first excited state. The solid curves represent the elec-
tron energy levels: ground state, quasi-Fermi state �black�, and first
excited state �gray�. The dashed curves show the same for holes.
Hole quasi-Fermi energy level is shown for the same mass of the
hole along the z direction as the mass along radial direction.
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excitation intensity and the radii of the core and the shell. To
illustrate the effect of the difference in the core-shell radii on
population dynamics, we solved Eq. �10� for several different
values of rc and rs. The results of the calculations are shown
in Fig. 3, where time t is normalized by parameter �0 calcu-
lated at the radii values rc=50 Å and rs=150 Å. The chosen
values of the parameters correspond to typical colloidal
quantum wire systems.26 The curves shown in Fig. 3 are
characterized by different initial densities, which is due the
fact that for wires with different cross sections the linear
density will differ even if the respective volume densities are
the same. For all initial densities in these calculations the
quasi-Fermi levels are below the first excited states for both
electrons and holes. These calculations demonstrate that even
small changes in the geometry of the system affects the de-
cay rate of the population, so that in realistic samples the
distribution of radiative rates due to size dispersion of the
structures significantly affects the PL decay. In order to find
the time dependence of PL in this case we need to evaluate
the following expression:

IPL�t� = −
1

n̄L�0��0



r̄c−�c

r̄c+�c 

w̄−�w

w̄+�w nL�t,rc,rc + w�
��t,rc,rc + w�


fc�rc�fw�w�drcdw �14�

which requires solving Eq. �13� for large number of different
values of rs and w randomly chosen from a specified distri-
bution. We will assume that rc and w are independent ran-
dom Gaussian variables with variances determined by the
growth technology. This description of the radii is consistent
with manufacturing process of the colloidal wires.26 Standard
deviations ��c,w� for both distributions are defined in terms of
�c and �w as �c,w=3�c,w, while �c,w are determined via
relative maximum deviation �r=�c / r̄c=�w / r̄w. Results of

the calculations carried out for �r=5% and �r=10% are pre-
sented in Fig. 4. The gray dotted line shows the PL decay of
the core-shell structure without any variations of the radii. At
large time scales the tail of the decay is a single exponent as
it supposed to be for almost constant lifetime. The solid
black curve shows the decay of intensity at �r=5%, while
the dashed curve corresponds to �r=10%. At earlier times all
curves exhibit significantly fast decay, which at longer times
slows down. Such a behavior is qualitatively explained by
the large overlap of electron and hole wave functions imme-
diately after excitation due to strong band bending caused by
increased carrier density. This density decreases with time
due to recombination resulting in the decrease in the
electron-hole overlap and slower rate of recombination. It is
interesting that in the strong band bending regime the time
dependence of the luminescence appears only weakly depen-
dent on the size disorder. At later times, however, when in
the absence of disorder one would have observed a standard
exponential decay, the deviations from the exponential be-
havior persist, but are now strongly dependent on the size
dispersion. For larger disorder the time dependence of PL is
much slower resulting in a longer tail of the PL. Thus our
calculations reveal that the two sources of the nonexponen-
tial behavior manifest themselves at different time scales:
effects due to carrier concentration prevail at shorter times,
while the disorder determines the kinetics of luminescence at
longer times.

III. COMPARISON WITH EXPERIMENTAL RESULTS
FOR VERTICALLY STACKED QUANTUM DOTS

Here we compare the theory presented in Sec. II with
experimental results obtained for vertical stacks of quantum
dots. The experiments were conducted with multiple stacked
ZnTe/ZnSe type-II QDs �Fig. 5� grown by migration-

FIG. 3. Time dependence of the normalized population of the
ground subbands of the ZnTe/ZnSe type-II core-shell quantum
wires for different geometrical parameters of the structure. The
solid black curve corresponds to the structure with core radius of
50 Å and shell radius of 150 Å. The light and dark gray dashed
and dotted curves correspond to the variation of the core and shell
radii. The time scale is normalized by �0, calculated lifetime from
the tail of the population dynamics of the structure �rc=50 Å and
rc=150 Å�.

FIG. 4. Time decay of the PL intensity of the ensemble of ZnTe/
ZnSe type-II core-shell quantum wires with distribution of the inner
radius around core radius of 50 Å and distribution of the thickness
of the shell region around 100 Å. The gray dotted line shows the
PL decay for the core-shell quantum wire with rc=50 Å and rs

=150 Å. The solid curve shows intensity of the 5% variation of the
radii. The dashed curve represents 10% variation of the geometrical
parameters.
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enhanced epitaxy, with growth period of 3 nm as confirmed
by x-ray diffraction.27 Details of the growth procedure can be
found elsewhere.15,27,28 The cw PL was performed in the
usual configuration using the 325 nm line of a He-Cd laser, a
3
4 m monochromator, and a thermoelectrically cooled GaAs
photomultiplier coupled with a SR400 photon counter. The
excitation intensity was varied over 4 orders of magnitude
using neutral density filters. In the time-resolved PL mea-
surements, a N2 laser �4 ns pulse width� and a 500 MHz
bandwidth TDS 654C oscilloscope were used for excitation
and detection, respectively. All measurements were done in a
closed-cycle refrigerator system at 10 K. Results of cw PL
measurements of the sample studied previously by time-
resolved PL in Ref. 10, and for which exciton binding energy
is 2 meV, are shown in Fig. 6 for several excitation intensi-
ties. Figure 7 demonstrates the shift of the PL emission en-
ergies �Eq. �9�� as a function of the pumping intensity. Solid
squares and triangles show shift of emission frequencies cor-
responding to the intensity of luminescence equal to 20% of
the maximum intensity on the lower- and higher-energy sides
of the PL band, respectively. We chose to focus on these
energies instead of commonly used peak energies in order to
eliminate contribution to the luminescence from excitons
bound to isoelectronic centers �ICs� of different sizes, which
are known to contribute significantly to the higher-frequency
side of the PL band emitted by type-II QDs.9 Recently, it has

also been pointed out that this spectral region can also be
affected by possible Mott transition which might take place
at high excitation intensities.29 Focusing on frequencies from
lower-energy part of the PL line, we are able to minimize the
undesirable contribution from these effects, which masks the
properties under study in this work. Behavior of a frequency
chosen from the higher-energy side of the band is shown for
comparison and can be seen to be qualitatively different.
This frequency shifts with increased pumping significantly
faster because at higher pumping power the contribution
from isoelectronic bound excitons is greater, resulting in an
apparent shift toward higher frequencies. Similar effect has
been also observed in magneto-PL,15 where effects associ-
ated with type-II QDs were obvious only at relatively low
excitation intensities.

Therefore we compare our theoretical results obtained
from Eqs. �7�–�9� with the behavior of the lower-energy side
of the PL. For calculations we used the same material param-
eters as previously �Table I� with only difference that now
we use an independent hole effective mass in the vertical
direction. The value of this mass is not known, and we use it
together with band offsets as a fitting parameter. Also, we
take into account that in the experimental samples the radius
of the core is rc=100 Å �Refs. 15 and 16� and the shell is
virtually infinite. In order to imitate this situation theoreti-
cally we chose rs=1000 Å. Calculated results are shown by
the solid line, which, as expected, reproduces proportionality
of the shift to the cubic root of the pumping intensity and can
be fitted to provide a good agreement with the experimental
results.

While the shift of the PL with pumping intensity for
type-II nanostructures has been extensively discussed in the
literature,6–8,10 the time evolution of the PL has so far at-

z

ZnTe
30 Å ZnSe

ZnTe

30 Å

r
ZnTe

100 Å

ZnTe

FIG. 5. Schematic representation of the stacked quantum dots
with their typical spatial parameters.

FIG. 6. PL spectra obtained for sample at four different intensi-
ties of excitation.

FIG. 7. Dependence of the emission energy on the normalized
excitation intensity. The light gray dashed line represents the maxi-
mum energy �left vertical axis� of the electron-hole transition be-
tween quasi-Fermi energy levels �Eq. �9��, while the solid black line
corresponds to the minimum energy of the band-to-band transition
�same axis�. The black squares correspond to the experimental
emission energy �left vertical axis� taken at 20% height of the peak
on the low-energy side. The gray triangles show the energy �right
vertical axis� taken at the same height, but from the high-energy
side of the PL spectra. The vertical dotted line shows excitation
intensity �Iexc�nL

2� for which electron quasi-Fermi energy level
reaches the first excited state.
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tracted much less attention. Although there are works where
PL lifetime has been calculated as a function of the photoex-
cited carrier concentration and PL kinetics in quantum wells
was compared with experiment �see, e.g., Refs. 6 and 30�, we
are not aware of any work related to the structures with cy-
lindrical symmetry and dispersion of the geometrical param-
eters. Inset of Fig. 8 shows normalized time-resolved PL at
2.385 eV �low-energy side of the PL� for three different ex-
citation intensities. At the lowest excitation intensity the PL
curve exhibits a decay that is close to a single exponential,
but does not appear to be as exact one. The PL decay ob-
tained at higher excitation intensities is significantly nonex-
ponential in agreement with previous experiments6,9,10 and
our theoretical results presented in Fig. 4.

The three curves shown in inset of this figure can be res-
caled and plotted as a single curve. Indeed, the higher pump-
ing power creates the larger concentration of the carriers at
t=0. However, at some later instance t1 this concentration,
which continuously decreases, will become equal to the ini-
tial concentration of the carriers at the lower pumping.
Therefore, by simply shifting the point t=0 to t= t1 the re-
spective lower pumping curve must coincide with the part of
the higher pumping curve for t� t1. Shifting initial times for
all three curves in the inset, we obtain the master curve
shown in main Fig. 8. One can see that points from all three
different pumping intensities form a perfect single line,
which shows excellent agreement with the results of the the-
oretical calculations depicted by the solid line. This line pre-
sents a normalized PL intensity obtained from Eq. �14� with
�r=5%, r̄c=100 Å, and �0=140 ns. Such a small size dis-
tribution is consistent with our main assumption that verti-

cally stacked QDs can be treated as a one-dimensional sys-
tem. Indeed, 5% size distribution is much smaller than the
actual distribution of the constituent QDs, which can only be
explained by averaging out of the dot diameters due to ex-
panded nature of the wave functions of the carriers. A large
value for �0 is consistent with type-II band alignment in
ZnTe/ZnSe heterostructures.

Finally, we would like to note that the theoretical curve in
Fig. 8 demonstrates much faster decay of the luminescence
than the curve in Fig. 4 at earlier times, but with slower
decrease in intensity at the longer times. This distinction is
due to difference in the shell radii used to obtain these two
figures. In the case of Fig. 4 we dealt with very wide shell
layer, so that the overlap of the electron-hole wave functions,
even though small to begin with, is much more sensitive to
the changes in the band structure. It, therefore, decreases
much faster with the concentration, and hence with time,
than in the case of Fig. 4, which describes decay of PL in the
sample with a much narrower shell. At the same time, the
fast decrease in the overlap makes instantaneous values of
the decay rate much smaller resulting in a much slower de-
cay at longer times.

IV. SUMMARY

In this paper, we have calculated the electron and hole
states and confining potential for cylindrical type-II core-
shell structures from a numerical solution of the self-
consistent Schrödinger-Poisson system of equations. We
measured cw and time-resolved PL from ZnTe/ZnSe verti-
cally stacked type-II QDs. We analyzed PL kinetics in such a
system taking into account the size dispersion of the nano-
structures. The results of calculations are found to be in a
good agreement with the experimental observations. The ob-
served time-resolved PL is described quantitatively, which
allowed one to obtained numerical value for the parameter
�0, characterizing overlap of the electron and hole wave
functions in the flat-band limit. The discrepancy in cw PL
spectra at high excitation levels is explained by the emission
of the isoelectronic bound excitons, which are always present
in Zn-Se-Te systems. We also discussed and investigated a
model situation for the core-shell structure with finite thick-
ness of the shell applicable to the colloidal quantum wires. It
was shown that with the existence of the distribution of the
radii the PL decay has essentially nonexponential behavior
even at the tail of the decay where the carrier lifetime is
almost the same due to slowly changing overlap of the elec-
tron and hole wave functions. We expect that our results will
spur experimental time-resolved studies in such colloidal
systems.
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FIG. 8. Time dependence of the PL intensity for different exci-
tation intensities. The solid line corresponds to the intensity ob-
tained from Eq. �13� with 5% variation of the core radius rc around
100 Å. Symbols show measured time-resolved PL for three differ-
ent excitation intensities. The time scale is for data obtained at the
highest excitation intensity. The inset shows these decays as nor-
malized curves �the time scale is in reference to the laser pulse for
each intensity�.
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